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Abstract
Submarine landslides pose a direct threat to offshore infrastructure, and an indirect
threat to coastal communities via tsunami generation. Recent studies have investigated
the potential role that submarine landslides play in causing tsunamis on the U.S. East
Coast. This paper quantitatively assesses submarine landslide hazard offshore Long
Island and New Jersey, as an example, but the method herein can be applied to the
entire Atlantic margin. Using publicly available bathymetry, surficial sediment data,
undrained shear strength values, and earthquake ground motion predictions, we map
the conditional probability of slope failure over our entire study area. We calculate this
probability using a first-order, second moment estimate of the variance of critical accel-
eration needed to overcome the resisting forces in the infinite slope stability analysis.
We show that this first-order, second moment approximation serves as a convenient and
computationally efficient way of assessing submarine landslide hazard over a broad
region, while also accounting for the significant uncertainties in the slope stability pa-
rameters.

1 Introduction
Recent analyses of submarine landslide hazard offshore the U.S. East Coast have fo-
cused on the potential devastation caused by tsunamis generated from such events.
Earthquakes are thought to serve as the primary trigger of tsunamigenic landslides in
this region. ten Brink et al. (2009) estimates the distance to the continental slope that
earthquakes of various magnitudes would have to be located to trigger significantly-
sized landslides. Chaytor et al. (2009) evaluate the size distribution of observed land-
slides along the Atlantic margin, implying trends of future activity. Grilli et al. (2009)
assess submarine landslide hazard at specific locations along the upper East Coast con-
tinental slope using a Monte Carlo-based approach. The goal of this paper is to sup-
plement these previous studies with a purely quantitative approach that incorporates a
large amount of data to give a full-coverage assessment of the probability of earthquake-
induced submarine landslide occurrence.

A probabilistic assessment of slope stability not only accounts for uncertainty in
parameter values, but can indicate factors most responsible for destabilization as well.
First-order, second moment (FOSM) analyses provide a computationally efficient way
of estimating the probability of failure (Ang and Tang, 1984). This method requires a
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mathematical model of failure, and mean and standard deviation values for the param-
eters of that model. Taking the Taylor series expansion of the model about its mean
parameter values, and ignoring higher order terms, gives analytical estimates of the
mean and variance of the failure metric (e.g. factor of safety (FS)). Assuming a prob-
ability distribution for FS, the mean and variance parameterize the distribution for FS,
which then yields estimates of the probability of failure. Neglecting correlation be-
tween parameters in the FOSM analysis results in a much simpler expression for the
variance of FS, and Haneberg (2004) notes that doing so does not significantly effect
the variance estimates.

Recent studies use the FOSM method to analyze subaerial landslide hazard (Su-
chomel and Mašı́n, 2010; Chen et al., 2007; Haneberg, 2004; Giasi et al., 2003; Luzi
et al., 2000), but the application of this method to submarine slope stability appears
less frequently in the literature. Yang et al. (2007) compare FOSM to other probabilis-
tic methods in evaluating the stability of a submerged, synthetic slope, and Cassidy
et al. (2008) perform a retrospective FOSM analysis on a submarine slide that occurred
in Finneidfjord, Norway in 1996. These studies evaluate 2-dimensional slope profiles,
and we are not aware of any studies that apply the FOSM analysis over entire offshore
regions.

This paper aims to provide a full-coverage, probabilistic slope stability analysis for
an area covering the continental shelf and slope offshore Long Island and New Jersey.
Such an analysis compliments previous studies in this area by quantitatively verify-
ing their results while extending the assessment over the entire region and honoring
publicly available data collected in the area. We show that FOSM provides an easily-
implemented and reliable assessment that gives preliminary indications of potential
failure “hotspots”, which can then be used to direct more-detailed, future investiga-
tions.

2 Study area and data
While the entire U.S. Atlantic margin generally has good data coverage, we focus on
the slope offshore Long Island and New Jersey (Figure 1a) because this area has po-
tentially high susceptibility to tsunami run-up, and submarine mass movements have
been studied here previously (e.g., Grilli et al., 2009). We expect the analysis presented
here to be repeatable along the U.S. East Coast, and other offshore locations around the
world with similar types of data.

The relevant data that extends over our study area includes SRTM30 global topog-
raphy (and bathymetry), surficial sediment classification, undrained shear strength (su)
values, and probabilistic peak ground accelerations. The SRTM30 dataset has a grid
resolution of 30 arc seconds (∼ 1km), and incorporates higher-resolution bathymetry
data where available (Figure 1a). The U.S. Geological Survey (USGS) East-Coast
Sediment Analysis classifies surficial sediments on the margin based on texture data
and provides the interpretation as a polygon shapefile covering all of our study area
(Figure 1b). Additionally, the USGS estimates su through a variety of methods (in-
cluding lab measurements and empirical relationships), and present the values in their



usSEABED database. In order to study shallow landslides, we filter out any su values
from depths greater than 1m below seafloor (points in Figure 1c). To assess earth-
quakes as a potential triggering mechanism for submarine landslides in this area, we
use 2008 USGS National Seismic Hazard Maps for the East Coast which give earth-
quake peak ground accelerations (PGA) for various probability levels (we choose to
look at the largest and rarest ground motions: 2% probability of exceedance in 50
years)(Figure 1d).

3 Data processing
In order to make the subsequent calculation outlined in the next section, we convert all
the necessary data layers to a raster format. Because the SRTM30 layer provides the
highest resolution, we sample the other layers onto its grid. Slope angle (α) comes from
computing the directional derivative of the SRTM30 elevation data, so does not need to
be re-gridded. We use literature values for the total unit weights (γ) of the surficial sed-
iments (values listed in Table 1), and so we rasterize the surficial sediment polygons to
the SRTM30 grid. The effective unit weight (γ ′) used in the FOSM calculations comes
from subtracting the unit weight of water (9.81 kN/m3) from the total unit weight.

Table 1: Total unit weights used for each sediment type.

Sediment γ (kN/m3) σγ (kN/m3) Sediment γ (kN/m3) σγ (kN/m3)
Sand/silt/clay 15.451 0.981 Sand 18.639 0.981
Sand-silt/clay 17.364 0.981 Gravel-sand 18.639 1.962
Clay 15.696 0.981 Gravel 20.601 1.962
Sand-clay/silt 17.364 0.981 Bedrock 29.430 0.981
Clay-silt/sand 14.519 0.981

Gridding the usSEABED su values is more difficult because these data exist at dis-
crete points. We interpolate these values to the SRTM30 grid by means of stratified
kriging (base layer in Figure 1c). Stratified kriging differs from ordinary kriging in that
it predicts su values only at grid cells that belong to the same surficial sediment unit as
the data points. That is, this type of kriging stratifies the su data points by the sediment
type they lie within, builds sample variograms from the stratified data, fits a variogram
model to each variogram, and then predicts within each sediment unit based on the
unit’s respective model. Not only does the model honor (potential) differences in spa-
tial correlation structure between sediment types, but will help mitigate the bias arising
from denser su sampling near-shore. Also, kriging gives uncertainties (variances) with
its predictions, making it compatible in providing parameters for the FOSM method.
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Figure 1: Location of study area, displaying a) SRTM30 bathymetry, b) East-Coast
Sediment Analysis surficial sediment classifications, c) usSEABED su values within
1m below seafloor on top of the kriged su values, and d) peak ground acceleration
(PGA) with 2% probability of exceedance in 50 years.

4 FOSM for FS and ac

In our infinite slope stability analysis, we parameterize all the resisting forces with
the undrained shear strength (su) given by the usSEABED dataset. Our static factor
of safety is then FS = su/(γ

′zsinα cosα), where the driving force in the denominator



results from the buoyant weight of the soil mass (γ ′ times thickness z) on the slope with
angle α . For the FOSM method, we take the partial derivatives of FS with respect to su
and γ ′, giving ∂FS/∂ su =(cscα secα)/(γ ′z), and ∂FS/∂γ ′=(−su cscα secα)/(γ ′2z).
Here, we only take the derivatives with respect to su and γ ′ because we assume that
these two parameters contain all the uncertainty in FS; we measure α directly from the
SRTM30 bathymetry and arbitrarily evaluate shallow-seated slides with z = 1m. Our
mean FS estimate (mapped in Figure 2a) comes from evaluating the equation for FS at
the mean parameter values (x̄i = (s̄u, γ̄

′)), while the variance of FS (σ2
FS) comes from

evaluating σ2
FS = ∑i (∂FS/∂xi)

2
x̄i

σ2
xi

, where σ2
xi

is the vector of variances for x1 = su
and x2 = γ ′. Figure 2b shows the static factor of safety standard deviation σFS.

We can repeat the FOSM method for the critical acceleration ac, which includes the
static factor of safety ac = (FS−1)gsinα = sug/(γ ′zcosα)−gsinα , where g is grav-
ity (Newmark, 1965). Taking the partial derivatives gives ∂ac/∂ su = (gsecα)/(γ ′z),
and ∂ac/∂γ ′ = (−sugsecα)/(γ ′2z). Again, our mean ac estimate (Figure 2c) comes
from evaluating the equation for ac above at the mean parameter values, and σ2

ac
=

∑i (∂ac/∂xi)
2
x̄i

σ2
xi

. Figure 2d shows the critical acceleration standard deviation σac in
order to keep the units comparable to the ac values. We can then calculate the proba-
bility of failure (P[fail], Figure 3) by parameterizing the normal cumulative distribution
function with a mean equal to ac and a standard deviation equal to σac , and plugging in
the mapped PGA values (Figure 1d). In other words, P[fail] is the area of the normal
density curve centered at āc with standard deviation σac that lies below the given PGA
value. Therefore, keep in mind that the probabilities of failure plotted in Figure 3 are
conditional on the PGAs with 2% probability of exceedance in 50 years, which are the
rarest (and thus largest) predictions of ground motion available from the USGS.

5 Discussion
While areas of higher landslide hazard largely exist on steeper slopes, α is not the
only variable controlling the distribution of failure probabilities in Figure 3. We see
from Figure 2 that the lowest FS and ac generally occur on the upper portion of the
continental slope, which has the steepest slopes (2◦ < α < 53◦), with the largest α

occurring in incisions in the slope. From Figure 3, we see the largest P[fail] values
(> 50%) share the same association, but a strict causative relationship between α and
P[fail] cannot be made; numerous patches of P[fail] < 50% exist on the upper slope
and some patches of P[fail] > 50% have shallow slope angles. While the upper slope
largely contains sand-clay/silt with sand-silt/clay draping the lower slope and patches
of sand/silt/clay, the lower probabilities are primarily associated with clay-silt/sand,
which is lighter than the former three sediment types. Additionally, su has a strong
influence on the spatial variation of P[fail] within the continental shelf.

Figure 3 identifies specific areas of distinctly high landslide hazard. A small patch
to the south on the upper slope (around -74.75◦, 36.25◦) has P[fail] > 80%, which is
surrounded by significantly smaller probabilities. Large patches of higher probability
exist off Delaware, owing to localized spots of low su and higher levels of ground
motion. Additionally, the canyon incised by the Hudson river (below Long Island) hosts
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Figure 2: Results from the FOSM analysis with input data from Figure 1 and Table 1:
a) static factor of safety FS clipped to values≤ 10, b) standard deviation of static factor
of safety σFS, also clipped to values ≤ 10, c) critical acceleration ac, and d) σac . Note
that negative ac values are associated with Fs < 1. Values are shaded by the SRTM30
terrain to show their relationship to geomorphic features.

higher probabilities than neighboring areas on the lower slope, but these hazardous
areas do not extend beyond the canyon walls. In general, canyons in the slope host
markedly higher probabilities of failure, and should be investigated in greater detail.

It is also important to note that the higher P[fail] values co-locate with negative ac



values on the continental slope, which in turn are associated with FS < 1. Even though
the locations with FS < 1 have relatively low uncertainty (σFS < 1), they also lie in
sparser su data coverage, so the shear strength of these slope sediments are not nearly
as well-characterized as on the shelf. Similarly, using arbitrarily different γ values may
reduce the distribution of FS < 1. Also, while the FS < 1 values generally have smaller
uncertainty than larger FS values, negative ac values have larger or just as large σac

values as areas with larger ac values. Namely, in Figure 2d, the upper slope generally
has larger uncertainty (σac) than either the lower slope or shelf. Thus, we are not as
confident in our estimates of the most hazardous areas as we are in the least hazardous
areas.

6 Conclusion
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Figure 3: The probability of shallow slope
failure given the peak ground accelerations
with 2% probability of exceedance in 50
years (Figure 1d).

While this study presents some signifi-
cant findings, certain limitations in the
analysis have yet to be overcome. For
one, this analysis does not account for
earthquake duration (i.e. Arias intensity)
and Newmark displacements, which de-
termine whether slope material will fail
catastrophically or not. Exceeding ac
may cause the soil mass to slip, but will
the soil mass slip far enough to com-
pletely fail? Here we have limited the
calculations to z = 1m, when it should
be fairly easy to iterate the calculations
over a variety of landslide thicknesses.
Deeper z values add the complexity of
sub-seabed structure and parameter vari-
ation with depth into the analysis, but in
order to address tsunami generation, this
analysis must adequately consider land-
slide thickness. Furthermore, our esti-
mates of γ are rudimentary at best, and
having field measurements of γ would
improve the results significantly.

Despite the above limitations, this pa-
per illustrates the viability of the FOSM
method as a preliminary indicator of the most hazardous areas in an entire region. Via
FOSM analysis, one can easily construct an analytical expression for the uncertainty
of a chosen failure metric, thus easing the computation of failure probabilities from a
large amount of data.
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